
MASTER THESIS
Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Engineering at the Univer-
sity of Applied Sciences Technikum Wien - Degree Program
Software Engineering

Mixed Intelligence
for Lost Property Offices

By: Paul Puntschart, BSc

Student Number: 1710299039

Supervisors: FH-Prof. Dipl.-Ing. Dr. Robert Pucher
Dipl.-Ing. Dr. Christian Kenngott

Vienna, May 3, 2019

Declaration

“As author and creator of this work to hand, I confirm with my signature knowledge of the rele-
vant copyright regulations governed by higher education acts (see Urheberrechtsgesetz /Aus-
trian copyright law as amended as well as the Statute on Studies Act Provisions / Examination
Regulations of the UAS Technikum Wien as amended).

I hereby declare that I completed the present work independently and that any ideas, whether
written by others or by myself, have been fully sourced and referenced. I am aware of any con-
sequences I may face on the part of the degree program director if there should be evidence of
missing autonomy and independence or evidence of any intent to fraudulently achieve a pass
mark for this work (see Statute on Studies Act Provisions / Examination Regulations of the UAS
Technikum Wien as amended).

I further declare that up to this date I have not published the work to hand nor have I presented
it to another examination board in the same or similar form. I affirm that the version submitted
matches the version in the upload tool.“

Vienna, May 3, 2019 Signature

Kurzfassung

TensorFlow ist eine Open-Source-Softwarebibliothek für numerische Hochleistungs-
berechnungen und bietet starke Unterstützung für maschinelles Lernen und künstliche
neuronale Netzwerke. In dieser Studie wurde TensorFlow zur Objekterkennung und
Bildklassifizierung genutzt. Ein spezielles künstliches neuronales Netzwerk, das Faltung
unterstützt, wurde trainiert.

Das Ergebnis dieser Studie ist eine Software-Bibliothek zur unterstützenden Verwaltung von
Fundbüros, die Aufbewahrungszeiten verringern und die Rückgabequote von Fundgegenstän-
den erhöhen soll. Für digitale Bilder von Fundgegenständen können diese erkannt und nach
Gegenstandskategorie bestimmt werden. Weiters werden die dominanten Farben als Haupt-
farbe und Nebenfarbe ermittelt. Im letzten Schritt werden die ermittelten Informationen als
Beschreibungstext zurückgegeben.

Ein selbst erstellter Trainingsdatensatz von 1736 hochauflösenden Bildern wurde verwendet,
um ein künstliches neuronales Netzwerk zu trainieren. Insgesamt wurden 7 verschiedenen
Gegenstandskategorien verwendet. Diese Bilder wurden unter Laborbedingungen erstellt
und bezüglich der Invarianz in Bezug auf Winkel, Abstand, Position, Rotation und Beleuch-
tung optimiert. Ziel dieser Studie war es, eine Genauigkeit von 90 Prozent bei der Gegen-
standsklassifizierung zu erreichen. Dieses Ziel wurde erfolgreich erfüllt. Darüber hinaus
kann die Anwendung Gegenstandsfarben beschreiben und unterstützt die Einführung neuer
Gegenstandskategorien durch die Verwendung einer Strategie namens Mixed Intelligence.

Die vorliegende Studie soll dabei helfen die Qualität von Gegenstandsbeschreibungen
zu optimieren.

Schlagworte: Bildklassifizierung, künstliche Gegenstandsbeschreibung, Bilderkennung, kün-
stliches neuronales Netzwerk, tensorflow, Farbbestimmung, künstliche Intelligenz, Mixed Intel-
ligence, tiefes künstliches neuronales Netzwerk, maschinelles Lernen

Abstract

TensorFlow is an open source software library for high-performance numerical computation,
which comes with strong support for machine learning and deep learning. In this study, Ten-
sorFlow was used for object detection and image classification. A deep convolutional artificial
neural network was trained.

The result of this study is a software library “Third Ai” for lost property offices. This software
library provides following three steps. Firstly, given an image showing one lost property item,
the library classifies the lost property item per name. Secondly, dominant colours are calculated
as major and minor colour for the detected item. In the last step all findings are returned, each
in a well-formatted and human-readable result text.

A self-made training data set of 1736 high-resolution images showing 7 different lost property
item classes was used to train an artificial neural network. These images were created under
laboratory conditions and optimised for invariance regarding variations of angle, distance, posi-
tion, rotation, illumination and background. The goal of this study was to reach an accuracy of
90 per cent for item classification, which was fulfilled successfully. Furthermore, the software
library can describe item colours and supports the training of new item classes due to the use
of a strategy called Mixed Intelligence.

It is hoped this study will inform practitioners about how to optimise item classification results
on their models.

Keywords: image classification, item classification, image recognition, neural network, ten-
sorflow, colour classification, artificial intelligence, mixed intelligence, deep learning, machine
learning

Acknowledgements

I would first like to express my very profound gratitude to my partner and to my parents for pro-
viding me with unfailing support and awesome encouragement throughout my years of study
and through the process of researching and writing this thesis. This accomplishment would not
have been possible without them. Thank you my dearest Alina, Mum, Dad and Eel.

I would also like to thank my Technical Supervisor Christian Kenngott as well as the Techni-
cal Domain Specialist Georg Müller from RUBICON IT GmbH and my Academic Supervisor
Robert Pucher from Fachhochschule Technikum Wien. Thank you for your awesome support.

Finally, I would like to joke some guys from my hometown who once told me that I will never
make it so far. Who is the master now?

Paul Puntschart

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Goal . 2
1.3 Methods . 3

1.3.1 Development Model . 3
1.3.2 Iterative Prototype Model . 4
1.3.3 Investment of Working Hours . 5

1.4 Team . 5

2 Basics 8
2.1 Artificial Intelligence . 8
2.2 Colour Theory . 9

3 Related Work 10
3.1 TensorFlow . 10
3.2 ColorMine . 10

4 Proof of Concept 11
4.1 Requirements . 11
4.2 Solution . 11

4.2.1 Setup TensorFlow-GPU . 11
4.2.2 Image Classification of Flowers . 13
4.2.3 Image Classification of Border Collie Bitches 13

4.3 Results . 14
4.3.1 Training Accuracy . 14
4.3.2 Sample Accuracy . 15
4.3.3 Tournament . 16
4.3.4 Conclusion . 16

5 Prototype Development 18
5.1 Prototype 1 - Image Classification . 18

5.1.1 Training Set with 3 Classes . 18
5.1.2 Training with 3 Classes . 19
5.1.3 Analysis with 3 Classes . 20
5.1.4 Training Set with 4 Classes . 21

5.1.5 Training with 4 Classes . 21
5.1.6 Analysis with 4 Classes . 22

5.2 Prototype 2 - Object Detection . 23
5.2.1 Requirements . 23
5.2.2 Training Set . 24
5.2.3 Training . 24
5.2.4 Visualisation . 25
5.2.5 Results . 26
5.2.6 Edge Cases and Misclassifications . 27

5.3 Prototype 3 - Subclassification . 30
5.3.1 Goal . 31
5.3.2 Experiment . 31

5.4 Prototype 4 - Determine Dominant Colours . 31
5.4.1 Iteration 1 - One Dominant Colour . 32
5.4.2 Iteration 2 - Minor and Major Colour . 34
5.4.3 Iteration 3 - Improvements . 35

5.5 Prototype 5 - Material Classification . 37
5.5.1 Idea . 37
5.5.2 Laboratory Conditions . 38
5.5.3 Conclusion . 38

5.6 Prototype 6 - More Item Classes . 38
5.6.1 Goal . 38
5.6.2 Training Set . 39
5.6.3 Training . 40
5.6.4 Results . 41

5.7 Conclusion . 43

6 Mixed Intelligence 44
6.1 General Idea . 44
6.2 Mixed Intelligence for Lost Property Offices . 45
6.3 Advantages and Disadvantages . 45

7 Release Development “Third Ai” 46
7.1 Goals . 46
7.2 Requirements . 47

7.2.1 Basic Requirements . 47
7.2.2 Performance Requirements . 48
7.2.3 Excitement Requirements . 48
7.2.4 Verification Strategy . 48

7.3 Technology . 48

7.4 Solution . 49
7.4.1 ThirdAiLibrary Model . 49
7.4.2 Code Metrics . 49
7.4.3 Usage . 50

8 Results 52
8.1 Item Classes . 52
8.2 Item Colours . 53
8.3 Accuracy . 53

9 Conclusion 54
9.1 Lost Property Item Description . 54
9.2 Item Descriptions with Permanently Installed Cameras 54
9.3 Item Descriptions with Smartphones . 54

10 Discussion 56
10.1 Edge Cases and Limitations . 56

10.1.1 Images with Multiple Items . 56
10.1.2 Overlapping Items . 56
10.1.3 Item Colour Issues . 57

10.2 Business Value . 57

11 Future Work 58
11.1 More Item Classes . 58
11.2 Higher Accuracy . 58
11.3 More Item Features . 58
11.4 Software Integration . 59
11.5 Retry of Rejected Prototypes . 59

Bibliography 60

List of Figures 62

List of Tables 64

1 Introduction

This thesis is written by Paul Puntschart who is interested in artificial intelligence and developed
the software library “Third Ai” which is a solution to identify and describe lost property items for
and in lost property offices by images of items captured by smartphones or other cameras. Lost
property offices are institutions in Austria, where people can hand over items which they found
as lost property. People can search for their lost property over a public website (in Austria this
is https://www.fundamt.gv.at/) and so get their lost property back. RUBICON IT GmbH was
interested in such a software library because they wanted to use artificial intelligence to improve
the rate of lost properties that found their way back to their owner.

The focus of this chapter is to explain the motivation behind the thesis, followed by aimed
goals, used methods of development and involved persons and institutions. At first, the section
“Problem” gives an overview of the problematic situation of lost property offices; lost property
officers have a hard job because it is a very subjective one. The problem of describing an item
is not only bound to the lost property domain. Subjective descriptions are a general problem
since humans describe things. Second, the section “Goal” explains how we may get rid of sub-
jective descriptions or at least variable descriptions by committing this problem to a computer.
Next, the section “Methods” shows the approach of reaching the goal in a capacity of 60 person
days (480 working hours). Finally, the section “Team” is a detailed listing of all people involved
in this master project.

1.1 Problem

One problem about lost property office item registrations is that it takes long times and high ef-
fort to fill out forms about lost property items. Lost property officers have to classify lost property
with given catalogues and detailed textual descriptions. If we would speed up item registrations
by one minute and if in average one registration is done every minute, we can save 24 hours of
work per day. The problem directly includes another one, because to create lost property item
descriptions is a highly subjective issue. However, these item descriptions are essential to get
our lost property back.

The main reasons for variability in item descriptions are knowledge, vocabulary and colour
perception. An excellent example to make this clear is the item shown in Figure 1: Image of a
Lost Property Item, and the question “What is shown in this image?”.

1

https://www.fundamt.gv.at/

Figure 1: Image of a Lost Property Item

This item can been described as smartphone, mobile phone, cell phone, Handy, calculator,
case or electronic thing, with a colour description widely ranging from orange, scarlet, over red
to black also including all kind of mixtures of them. Some even say the item is green, due to
colour blindness.

Although it is also a correct answer, hardly anyone mentiones the wooden desk, which is the
main item on this image regarding the pixel area per item. That shows that only lost property
domain knowledge and problem understanding can solve the issue of finding the focus and
describe items so that others would recognise them just by their description.

To solve the question above, Figure 1 shows (in the authors words) a “black smartphone in
a red cover laying on a wooden desk”. In this thesis we want to ask the computer what item is
shown and how it looks like, and so eliminate the human subjectivity.

1.2 Goal

This goal description was created in the first week of work and has not changed since then.

The goal of this thesis is to develop a software library which can output item descriptions for
given images showing lost property items. Item descriptions shall include an item class name
and item colour information. The subtask of item classification has to reach an accuracy of 90
per cent. The accuracy is defined as how many items were classified correctly depending on
their item class.

2

The following Figure 2: Topic Description of the Preliminary Project Proposal shows the original
topic description, written by the Technical Supervisor Christian Kenngott and Paul Puntschart.

Figure 2: Topic Description of the Preliminary Project Proposal

1.3 Methods

For this master project, a custom development model was developed which fits the personal
approach of solving problems. The structure of this thesis is also based on that model.

There was a meeting held every two weeks between the Technical Supervisor Christian Ken-
ngott, the Technical Domain Specialist Georg Müller and the author of this thesis to discuss
progression, results and future steps (mentioned persons are described in the section “Team”).
This way a very agile development process was possible. Presentation slides were used in
every meeting to support a fast understanding of the master project status.

The master project status was also submitted to the Academic Supervisor Robert Pucher every
week by excerpts of a project diary, written daily during the implementation phase of the master
project.

1.3.1 Development Model

The development model starts with a proof of concept to get a clue what to expect and to assess
what is coming up. The next step is to perform iterative prototype development and so collect
knowledge and practice. In the final stage, the plan is to develop a stable release candidate
which includes all previous collected proven knowledge.

3

Figure 3: The Development Model

Figure 3: The Development Model shows the timeline which connects the proof of concept,
prototype development and release development. The timeline in the figure is the dashed line
between Start and Goal. It passes the Proof of Concept, then loops around Prototype Develop-
ment because several prototypes are expected and finally passes the Release Development.

1.3.2 Iterative Prototype Model

The previous section describes the development model. One stage of it is prototype develop-
ment, which is also the largest one in the aspect of time consumption. The following iterative
prototype model was developed to fit the specific needs of working with artificial intelligence.

Figure 4: The Iterative Prototype Model

Figure 4: The Iterative Prototype Model shows the seven stages of a typical prototype develop-
ment iteration. The purpose of each iteration is to cover a specific topic to build up practical and
empirical knowledge. Different topics require different strategies and different technologies, so
the stages Strategy Analysis an Technology Analysis are treated first.

4

1.3.3 Investment of Working Hours

57 working days á 8 hours were invested in the implementation phase of this master project.
Working hours were spread over 6 months in total. The following chart in Figure 5: Investment of
Working Hours by Date shows the distribution of working hours over the implementation phase
of 6 months.

Figure 5: Investment of Working Hours by Date

The working hours investment is interrupted by 2 periods of holidays. The project was pro-
posed in June 2018 and the implementation phase finished in January 2019. All findings were
documented during the implementation and summarised in this thesis until May 2019. The de-
veloped solution “Third Ai”, which is the heart of the implementation, was implemented in just 7
working days in January 2019.

1.4 Team

This section shows all persons and institutions involved in the master project and how they are
connected with each other. In total 5 persons and 3 institutions are involved.

The following Table 1 shows all persons involved in the project. The abbreviations are used
to describe their connections in Figure 6: Team Organigram.

5

Name Abbreviation Role

Paul Puntschart PP Student

Christian Kenngott CKE Technical Supervisor

Georg Müller GM Technical Domain Specialist

Robert Pucher RP Academic Supervisor

Alessandra Pieroni UM-P Academic Reviewer

Table 1: Table of Persons

The following Table 2: Table of Institutions shows all institutions involved in the project, the full
name, address and contact information.

Institution Address Contact

Fachhochschule

Technikum Wien

Höchstädtplatz 6

1200 Wien

Austria

Email: info@technikum-wien.at

Phone: +43 1 333 40 77-0

RUBICON IT GmbH

Werdertorgasse 14

1010 Wien

Austria

Email: office@rubicon.eu

Phone: +43 1 533 25 55-0

Università degli Studi

Guglielmo Marconi

Via Plinio, 44 -

00193 Roma

Italia

Fax +39 06 37725212

E-mail: info@unimarconi.it

Tel +39 06 377251

Table 2: Table of Institutions

The following organigram about the team, Figure 6: Team Organigram, shows the connections
between persons and institutions.

6

Figure 6: Team Organigram

The master thesis is written by the student Paul Puntschart (PP). Technical Supervisor Chris-
tian Kenngott (CKE) and Technical Domain Specialist Georg Müller (GM) are working at the
company Rubicon and so in direct contact to Paul Puntschart, who is also working at RUBI-
CON besides studying at the Fachhochschule Technikum Wien and the Università degli Studi
Guglielmo Marconi.

The master thesis is judged by Academic Supervisor Robert Pucher (RP), Technical Super-
visor Christian Kenngott (CKE) and Alessandra Pieroni (UM-P).

7

2 Basics

This chapter references work which can be used as basic knowledge for this thesis. It covers
artificial intelligence and colour theory, each in a separate section. The first section is about
references to artificial intelligence literature, containing definitions, problems and explanations.
The second section introduces references to colour definitions and colour theories.

2.1 Artificial Intelligence

In a research project proposal “A proposal for the Dartmouth summer research project on ar-
tificial intelligence” in 1955 [1], the work of a study about artificial intelligence is described as
“the study is to proceed on the basis of the conjecture that every aspect of learning or any other
feature of intelligence can in principle be so precisely described that a machine can be made
to simulate it.”. In this proposal, 7 aspects of artificial intelligence problems are listed:

• Automatic Computers
• How Can a Computer be Programmed to Use a Language
• Neuron Nets
• Self-Improvement
• Abstractions
• Randomness and Creativity

In “Artificial intelligence: The very idea” [2] Haugeland describes the work with artificial intelli-
gence as “the exciting new effort to make computers think...machines with minds, in the full and
literal sense.”. Haugeland also says “the very idea of AI may or may not be successful: we can
only find out by trying”.

In “Artificial Intelligence Third Edition” [3], artificial intelligence is described as “the study of
how to make computers do things at which, at the moment, people are better.”. This means that
artificial intelligence is dependent of the current state of computer science. Artificial intelligence
has to perform tasks that a human would be considered intelligent to perform it. To let a com-
puter act in a human way is a goal we want to achieve because this way we can use science to
let computers do work for us.

8

2.2 Colour Theory

In “Color Measurement of Segmented Printed Fabric Patterns in Lab Color Space from RGB
Digital Images” [4], the Lab colour space and the RGB colour space are introduced. The RGB
colour space is a cube with red, green, blue, cyan, magenta, yellow, black and white corners.

The book “Zur Farblehre” [5] (engl. Theory of Colours) by Johann Wolfgang von Goethe is
about his theory of colours. Goethe based his theory on the eye´s experience of colours. He
researched the nature of colours and how colours are perceived by humans. The book was
published in 1810 in German and translated, “Goethe’s Theory of Colours: Translated from
the German; with Notes by Charles Lock Eastlake” [6], to English (with added notes) in 1840
by Charles Lock Eastlake. The original version contains the following six parts (chapters), the
translated version has an extra chapter with notes.

The first part is about physiological colours, including effects of light and darkness on the eye,
lights, shadows and subjective halos. Physiological colours are the foundation of the whole
doctrine. The second part is about physical colours; colours which are produced by material
mediums. The third part is about chemical colours; colours which we can produce or fix in
certain bodies. Black and white are described as chemical colours. Part IV is about general
characteristics of colours and the general nature of colour appearance. The last chapters, part
V and part VI are about relations to other pursuits and effects of colours with reference to moral
associations.

“Opticks” [7] is a book by Isaac Newton, published in 1730. Newton based his theory on the
mathematical understanding of optics and found that white light is a composition of individual
colours and already contains all other colours. The following description is about the fourth
edition of “Opticks”.

The first book of opticks is divided into the chapters “Definitions”, “Axioms” and “Propositions”.
Book 2 adds more propositions and observations. The third book adds more observations,
queries and quests.

9

3 Related Work

This chapter references related work. TensorFlow and ColorMine were used in this work to fullfil
the thesis goal. TensorFlow is often used to train neural networks; in this work, TensorFlow
was used for object detection and image classification. ColorMine is a proven colour distance
calculator.

3.1 TensorFlow

TensorFlow [8] is an open source software library for high-performance numerical computation,
which comes with strong support for machine learning and deep learning. In comparison to this
thesis, in “Greedy Algorithm Based Deep Learning Strategy for User Behavior Prediction and
Decision Making Support”, TensorFlow is used to suggest a deep learning strategy for decision
support, based on a greedy algorithm.

3.2 ColorMine

ColorMine [9] is an online delta-E calculator and can also be used as software library to calcu-
late colour distances. In comparison to the used colour theory of the RGB colour space in this
work, ColorMine supports the color spaces Rgb, Cmy, Cmyk, Hsl, Xyz, CIE-L*ab, CIE-Lch, and
Yxy.

10

4 Proof of Concept

The first practical step of this master project was to perform a so-called proof of concept. The
proof of concept is, in the manner of the chosen development model, see 1.3.1 Development
Model, an effort to quickly determine the feasibility of aimed goals and helps to facilitate technol-
ogy decisions. With a small set of the hardest requirements (an excerpt of the requirements of
the thesis), misleading strategies or technologies can be rejected with small effort. In general,
a proof of concept is an evidence that an idea, a plan or a project is likely to succeed. In this
work it turned out not to be an evidence, however, it indicated the right direction and a possible
solution, at least to meet the requirements described in the following section.

4.1 Requirements

This section shows the requirements for the proof of concept which led to the use of TensorFlow
as technology. Requirements were developed to analyse the general topic of image classifica-
tion with artificial neural networks.

• Setup TensorFlow (the graphical processor unit version of TensorFlow) and run a test to
verify that the setup is working and faster than the CPU version
• Use an already proofed training set to train the computer in image classification
• Create a custom training set and evaluate the computer for image classification tasks

The first three requirements are preconditions for the last one. The last requirement is the
most important one because the intention behind it is to decide for or against TensorFlow as
technology.

4.2 Solution

The previous section showed the requirements for the proof of concept, and in each of the
following subsections, the solution to every requirement is presented.

4.2.1 Setup TensorFlow-GPU

For this requirement Python and TensorFlow were installed on a laptop. The laptop is a spe-
cial XMG setup with built-in desktop PC components. It took 8 hours to set up Python and
Tensorflow.

11

Device Specification

The model of the laptop of the author is “XMG Zenith” with the following specification:

• Operation system: Microsoft Windows Version 10.0.17134.165
• Processor: Intel Core i7-8700 CPU @ 3.20 GHz
• Installed memory (RAM): 16 GB
• System type: 64-bit Operating System, x64-based processor
• Graphical processor unit: NVIDIA GeForce GTX 1080

The laptop device can optionally support a second graphical processor unit of NVIDIA GeForce
GTX 1080. It was decided to upgrade the laptop only if out-of-memory errors would occur which
did not happen.

Python

Python Version 3.6.6 can be downloaded from https://www.python.org/ftp/python/3.6.6/pyth
on-3.6.6-amd64.exe. It was installed under C:\Program Files\Python36. The checkbox
“set the PATH environment variable” was enabled at the installation process.

Tensorflow

To install TensorFlow API 1.9 (with native pip), a command prompt was started with administra-
tor rights and the appropriate pip3 install command was issued:

C:\> pip3 install --upgrade tensorflow-gpu

During the installation process, there were many warnings
that C:\program files\python36 is not set on PATH, so the device was rebooted. The
installation guidelines can also be found on https://www.tensorflow.org/install/install_windows.
The website https://developer.nvidia.com/cuda-90-download-archive?target_os=Wi
ndows&target_arch=x86_64&target_version=10&target_type=exelocal was visited and
the legacy cuda version 9.0, namely “cuda_9.0.176_win10.exe” was downloaded and in-
stalled. It was necessary to edit the PATH environment variables from the path *9.2* to
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin. After a de-
vice reboot following output was shown:

Figure 7: CUDA Driver Error Message

12

https://www.python.org/ftp/python/3.6.6/python-3.6.6-amd64.exe
https://www.python.org/ftp/python/3.6.6/python-3.6.6-amd64.exe
https://www.tensorflow.org/install/install_windows
https://developer.nvidia.com/cuda-90-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-90-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

To get the missing “cudnn64_7.dll”, “cuDNN v7.1.4 (May 16, 2018), for CUDA 9.0” was
needed, available from https://developer.nvidia.com/rdp/cudnn-download after regis-
tration. In the zipped download file, in the bin directory, “cudnn64_7.dll” and copied it to
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin was found.

It was verified that TensorFlow had been installed correctly by issuing the following command:

Figure 8: TensorFlow GPU Setup Test

As shown in the screenshot in Figure 8: TensorFlow GPU Setup Test, the model builder test ran
18 tests in 60 milliseconds successfully. This result enabled to go on with the next requirement.

4.2.2 Image Classification of Flowers

Tensorflow offers a tutorial in their guide page “How to Retrain an Image Classifier for New Cat-
egories” [11]. The guide uses an archive of creative-commons licensed flower photos to retrain
a new flower class on a pre-trained neural network. The tutorial covers training, bottlenecks,
training data visualisation and hyperparameters. There is also a section about how to train a
custom image set. The guide was used to verify that TensorFlow is working properly and that
the graphical processor unit of the laptop meets the minimum requirements to process training.

4.2.3 Image Classification of Border Collie Bitches

Alina Gaugg is the owner of two Border Collie bitches, Borderline Country Lordana “Minsk” and
Borderline Country Tiara “Titos”. On her website https://www.mileysworld.at/ [12], Alina shows
hundreds of images of the bitches in her online gallery. These images were used to train a
convolutional artificial neural network to classify images showing Minsk or Titos. The following
Figure 9: Borderline Country Lordana “Minsk” (left) and Borderline Country Tiara “Titos” (right)
shows two images of the used training set.

13

https://developer.nvidia.com/rdp/cudnn-download
https://www.mileysworld.at/

Figure 9: Borderline Country Lordana “Minsk” (left) and Borderline Country Tiara “Titos” (right)

4.3 Results

This section shows the results of the proof of concept. Following subsections explain the eval-
uated accuracy of tested image classification tasks and why TensorFlow has been chosen as
the technology for further work. The last subsection is a conclusion over all results.

4.3.1 Training Accuracy

TensorBoard was used to analyse the created model. “TensorBoard is a suite of web ap-
plications for inspecting and understanding your TensorFlow runs and graphs.” (see https:
//github.com/tensorflow/tensorboard/blob/master/README.md, [13]). With TensorBoard it
was possible to watch accuracy and cross-entropy live at the training over training steps and so
over time. The following figure shows both accuracies on the left and cross-entropy on the right
diagram side over 50 000 training steps which were equivalent to 60 minutes in time.

Figure 10: TensorBoard Training Graphs

In the accuracy diagram on the left, we can see a smoothed graph (the original graph is shown

14

https://github.com/tensorflow/tensorboard/blob/master/README.md
https://github.com/tensorflow/tensorboard/blob/master/README.md

in brighter colour) representing the accuracy over time. We can say that with the chosen train-
ing parameters, the graph converges at 10.000 steps and shows no further improvement.

In the cross entropy diagram on the right, we can see that the cross-entropy is still improv-
ing after 50.000 training steps.

4.3.2 Sample Accuracy

Besides training accuracy and validation accuracy, it was decided to create a small sample with
images the computer has never seen before and call that sample accuracy. Table 3 shows the
results. The first row is the header row followed by a total of 9 rows representing the sample
results. The headers are:

• Sample: The sample number
• First Guess: The computer´s guess which image class is shown in the given image. The

score, s1, stands for the confidence of the computer´s decision.
• Second Guess: The computer´s second guess, which is the opposite of the first guess for

binary classification with a score of 1− s1.
• Truth: The image class for each sample in truth.

Following Table 3: Proof of Concept - Sample Accuracy shows the result of 9 evaluated images.

Sample First Guess Second Guess Truth

1 titos (score=0.89437) minsk (score=0.10563) titos

2 titos (score=0.99913) minsk (score=0.00087) titos

3 titos (score=0.81812) minsk (score=0.18188) minsk

4 minsk (score=0.93442) titos (score=0.06558) minsk

5 titos (score=0.97587) minsk (score=0.02413) titos

6 titos (score=0.90440) minsk (score=0.09560) titos

7 minsk (score=0.87146) titos (score=0.12854) minsk

8 minsk (score=0.81686) titos (score=0.18314) minsk

9 titos (score=0.81283) minsk (score=0.18717) minsk

Table 3: Proof of Concept - Sample Accuracy

The sample accuracy is 7 correct guesses out of 9 total guesses and so 77.7 per cent. Wrong
guesses are marked orange in the figure. We can see that the computer is having issues to
classify Minsk correctly. Only 3 out of 5 images of Minsk were decided correctly. However if the
confidence is above 82 per cent, the guess is always correct here.

15

4.3.3 Tournament

To compare human and artificial skills, it was decided to organise a tournament. Seven persons,
playing against the computer of the author, should solve the binary image classification task of
deciding whether an image shows the students dog Minsk or his other dog Titos.

Boundary Conditions

The persons have 3 minutes time to learn how Minsk and Titos look like with a library of 100
images of each dog. These conditions are the same conditions that the computer have to learn.
After the learning time, an image showing one of the bitches is presented and the probands
have 3 seconds time to make a guess which one is shown. For every image that a person
makes a guess, the computer is also making a guess. After an average of 5 tries, the winner is
chosen as the one who can classify more images correctly. Draws are also counted.

Result

In all seven matches, the computer could not be defeated. Only one person was able to play
a draw against the computer. The computer´s evaluation time for each image was below 2
seconds.

4.3.4 Conclusion

The previous subsections show that the training accuracy of 92.5 per cent.

The sample accuracy reached 77.7 per cent, and we can also see that if the computer´s confi-
dence is over 82 per cent per guess, the decision is correct. For the sample accuracy of 77.7
per cent it is woth noting that for binary classifications we can calculate the probability that a
random classifier has to guess 7 out of 9 classes correctly. The formula behind this is based on
the binomial coefficient

(
n
k

)
= n!

k!(n−k)! . With that in mind, we can calculate the probability as

P (X ≥ k) =

n∑
i=k

(
n

i

)
· pi · (1− p)n−i.

For our example, P (X ≥ k) for n = 9, k = 7 and p = 0.5, results in a probability of 9 per cent.
This means that a sample size of 9 is not a reliable number. Higher sample sizes, for example
the probability P (X ≥ k) for n = 90 and k = 70 which actually has the same accuracy, result in
0.0000057 per cent which is more than a million times less likely.

The tournament showed that no one of 7 persons were able to beat the computer.

Because of these evaluations, especially the 92.5 per cent training accuracy, it was decided

16

to choose TensorFlow as the technology for the prototype development. The next planned step
was to build a prototype for more than two image classes, create a training set with more than
100 images per class and then train the computer to classify images as explained in detail in
the first section of the next chapter.

17

5 Prototype Development

Each prototype covers one topic. This strategy makes it possible to reach the thesis goal step by
step. Unrewarding prototypes can be identified and rejected, prototypes with acceptable results
can be used for the final development phase (see chapter 7 Release Development “Third Ai”).
The last section in this chapter is a conclusion over all prototypes.

5.1 Prototype 1 - Image Classification

Prototype 1 is, like the work in the previous chapter, an experiment to analyse image classifica-
tion. The used technology, once again, is TensorFlow. In comparison to the previous chapter,
this prototype is already designed for the domain of a lost property office and the special needs
that the domain comes with.

5.1.1 Training Set with 3 Classes

It was decided to use the following lost property item classes as training data set and 921 photos
of these items were taken at the office workplace desk at RUBICON, each showing exactly one
item (or just the empty table for the third class):

• Single keys, 480 images named “key”
• Smartphones, 267 images named “phone”
• Unknown (the empty table), 174 images named “unknown”

For all pictures, different angles, item rotations, item positions, distances and lights were used to
make the neural network invariant against these variations. So the computer can not associate
sunlight with smartphones for example. 14 different smartphone models and 23 different keys
were used as items. The following Figure 11: Prototype 1 Training Set shows a small excerpt of
the training set.

18

Figure 11: Prototype 1 Training Set

To use those images for training, it was needed to scale them to a dimension of 600 x 400 pix-
els. This limitation is a limitation of the used pre-trained convolutional artificial neural network.
With a horizontal and vertical resolution of 96 dpi, an image took 19 kilobytes of disk space on
average. The whole data set took below 20 megabytes in total.

The training set was then used to analyse different learning approaches, as documented in
the following analysis sections.

5.1.2 Training with 3 Classes

The pre-trained convolutional artificial neural network model “SSD with Mobilenet v1” was used
as model. The “ssd_mobilenet_v1_coco_2017_11_17” was used as fine tune checkpoint. The
following parameters were used as training configuration.

train_config: {
batch_size: 2
optimizer {

rms_prop_optimizer: {
learning_rate: {

exponential_decay_learning_rate {
initial_learning_rate: 0.004

19

decay_steps: 800720
decay_factor: 0.95

}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0

}
}
fine_tune_checkpoint: "ssd_mobilenet_v1_coco_2017_11_17/model.ckpt"
from_detection_checkpoint: true
num_steps: 200000

}

The model was only trained for 3 minutes. The, the training was manually stopped, because
TensorBoard showed that the loss function was already converged.

5.1.3 Analysis with 3 Classes

I created a test set of 45 images that the model has never seen before to analyse the result
accuracy. Parts of the test set were images I did not use for training, parts random images from
the internet with random background, sometimes just white background. I developed following
batch script to classify all files in that test set:

@echo off
echo ####################################
echo ####### Validation Analysis ########
echo ####################################
echo ____________________________________
for %%i in (analysis*.jpg) do (
echo %%i
python -m scripts.label_image --graph=tf_files/retrained_graph.pb
--image=C:\msc\tensor\models\prototype1\%%i
echo ____________________________________
)
pause
)

The following Figure 12: Prototype 1 Classification Analysis 1 Screenshot shows a screenshot
of the folder, containing all 45 images, at the left side and the running batch script at the right.

20

Figure 12: Prototype 1 Classification Analysis 1 Screenshot

I manually validated the result of all 45 image classifications. The result was that 100% (45 out
of 45) images have been classified correctly. So the accuracy was 100 per cent.

5.1.4 Training Set with 4 Classes

I extended the training set with the class “Wallet” with 179 images. I decided to pick those
classes, because they are mentioned under the top 10 of lost items in vienna [16].

5.1.5 Training with 4 Classes

The training was visualised with TensorBoard. The following Figure 13: Training Graphs in
TensorBoard shows accuracy and cross entropy over 2000 training steps. The duration for
2000 training steps was 3 minutes.

21

Figure 13: Training Graphs in TensorBoard

The accuracy for the training set reached 100 per cent which means that at the end of the train-
ing the computer was able to classify all tested images correctly. The cross entropy converged
to 0.

5.1.6 Analysis with 4 Classes

I used the developed batch script again to classify a new test set containing 18 images of
wallets. I used random images from the internet with random background, sometimes just
white background, as sample. The following Figure 14: Prototype 1 Classification Analysis 2
Screenshot shows the test set containing all 18 images at the left side and the running batch
script at the right.

22

Figure 14: Prototype 1 Classification Analysis 2 Screenshot

Like in the first analysis iteration, the result was that 100% (18 out of 18) images of wallets have
been classified correctly.

We can also see in the script part of the figure that with a score of above 99% as median
the computer´s confidence is not even dropped by 1 per cent with other classes beneath the
wallet class. The new trained wallet class reached the highest confidence over all classes.

5.2 Prototype 2 - Object Detection

The goal for this prototype is, as an extension to Prototype 1 from the previous section, to locate
up to 3 items in a given image. Furthermore, detections shall be visualised in a human-readable
format which is judged by the Technical Domain Specialist Georg Müller.

5.2.1 Requirements

This section shows the requirements for the second prototype.

23

• Prepare a training set containing 3 different item classes and their bounding boxes
• Train the computer to detect and classify items in given images
• Develop a program to visualise detections as images with labelled bounding boxes
• Evaluate the results and analyse edge cases

The following subsections show how those requirements were achieved.

5.2.2 Training Set

To train a neural network for object detection, it is necessary to prepare a training set that con-
sists of images with labelled bounding boxes for each item in one image. Drawing bounding
boxes for 642 items took 4 hours.

The following Table 4: Object Detection - Data Split Ratio shows the used split ratio for training
data and test data. There may be an opportunity for improvement by choosing another split
ratio or the so-called “k-fold cross-validation”.

All Data Training Data Test Data

642 items 100 % 578 items 90 % 64 items 10 %

Table 4: Object Detection - Data Split Ratio

The following Table 5: Object Detection - Class Split Ratio shows the total item counts per class
and the distributions used for the training data and the test data.

All Data Training Data Test Data

212 keys 33 % 191 keys 33 % 21 keys 33 %

262 phones 41 % 236 phones 41 % 26 phones 41 %

168 wallets 26 % 151 wallets 26 % 17 wallets 26 %

Table 5: Object Detection - Class Split Ratio

5.2.3 Training

The training was based on the pre-trained model “faster_rcnn_resnet101_coco_11_06_2017”.

TensorBoard was used to visualise the training. The following Figure 15: Prototype 2 Ten-
sorBoard Analysis shows a screenshot with the training progression over 3 899 training steps
for precision, recall, classification loss and total loss. The training was running for 7 hours and
17 minutes.

24

Figure 15: Prototype 2 TensorBoard Analysis

In the diagrams, we can see the smoothed graph (the original graphs are shown in brighter
colour) representing the training progression. The best result has been reached at step number
3 621 after 6 hours and 45 minutes. The model was saved and the training stopped at this point
as the main goal of this thesis is to break the 90 % line of accuracy which was already done
here.

The following figure shows a comparison between the detection of the model and the so-called
ground-truth (the handwritten bounding box) after 3 899 training steps.

Figure 16: Prototype 2 TensorBoard Detection vs Groundtruth

We can see that the detection is 99 % IoU (intersection over union). There is no need to
reach 100 % because the IoU of the autor´s handwritten bounding boxes is below 95 % due
to shadows and drawing precision. For all detections a safety padding of 5 % did capture the
entire area of the item.

5.2.4 Visualisation

A simple trick to visualise human readable and easy verifiable outputs is to colour the bounding
boxes differently for each item class. TensorFlow comes with an opportunity to do that by
adjusting the given python script “label_image.py”. A batch script was developed to analyse a
given image by path and save a new labelled image at the same directory. The result looks like
the following image in Figure 17: Prototype 2 Output.

25

Figure 17: Prototype 2 Output

The resulting output shows the original image with bounding boxes around found items and a
text label describing the item class and the score (confidence). The colours of the bounding
boxes are representing the item class.

5.2.5 Results

All three trained item classes were analysed on different backgrounds to verify that the model is
invariant against background variations in terms of structure, colour and different illuminations.
The following Figure 18: Object Detection with Different Backgrounds shows the result of the
trained model.

26

Figure 18: Object Detection with Different Backgrounds

The result was that all three items on all four images were classified correctly. For this figure
it is to point out that the results show that the model achieved invariance against the shown
backgrounds with black carpet in the top left image, a wooden desk in the bottom left image, a
plain white wooden window ledge in the top right image and the blue seat cover in the bottom
right image. The most significant IoU mismatch is the one of the detection of the wallet in the
top left image with an IoU of 92 %. The lowest score that the model predicted for classification
was for the smartphone in the bottom left image with a score of 75 %.

5.2.6 Edge Cases and Misclassifications

This subsection describes findings of edge cases and misclassifications which appeared during
the result analysis. The purpose of this analysis is to prevent future pitfalls. Limitations can be
considered to develop future requirements.

Abstract Paintings

Because we can hardly look inside neural networks, it was wondered which features the model
needs to classify an item. It was decided to paint two keys with Microsoft Paint, besides some
other shapes that a human would not declare as key such as triangles, stars and circles. The

27

following Figure 19: Object Detection for Abstract Paintings shows the painting and the result
that the model returns, the numbers on the axis represent pixels.

Figure 19: Object Detection for Abstract Paintings

Although this is a side effect of the training, it was not helpful to reach the goal of this thesis, so
further analysis in that direction was rejected.

Overlapping Items

There is a big chance that keys were brought to the lost property office as a bunch of keys on
a key ring. Since the model was only trained to detect single keys, it was tested what happens
with a bunch of 7 keys. The following Figure 20: Object Detection for Overlapping Objects shows
the result of the model.

28

Figure 20: Object Detection for Overlapping Objects

Although this is a nice side effect of the training, it was not really helpful to reach the goal of this
thesis, so further analysis in that direction was rejected.

Unknown Objects

The model was tested with objects that the model has never learned, to answer the question
“Is my Border Collie either a key, a smartphone or a wallet?”. The following Figure 21: Object
Detection for Unknown Objects shows two tested images.

29

Figure 21: Object Detection for Unknown Objects

The model detected 3 keys in the image. None of the predicted bounding boxes does match
one single key. The model has not learned to detect overlapping items.

Conclusion

Although this kind of analysis looks a bit weird at first sight, it is sometimes a big win to analyse
misclassifications because we can find features that the model learned “by mistake”. We then
have the opportunity to adjust the training set and explicitly train the model to classify unwanted
objects for example as “unknown”. For the specific case of lost property offices, we might learn
the model not to detect dogs, just in case a lost property officer think it is funny to take a picture
of his dog he brought to work that day. We never know what the users are doing with our solu-
tion.

The example of the overlapping key led to following future strategies:

• Do not allow images with overlapping items
• Create an extra training set with a category “keyring”

With that in mind, the development of Prototype 2 finished and development continued with a
prototype to recognise brands of already detected items, as described in the next section.

5.3 Prototype 3 - Subclassification

This section shows results of image subclassification and why it was rejected as thesis goal.
Subclassification is to classify a feature of an already classified lost property item. To classify
the brand of an image that has already been classified as a smartphone is such a subclassifi-
cation. One limiting issue is the small resolution of a brand on an image because the area of a
brand logo is relatively small compared to the item.

30

5.3.1 Goal

The goal of this prototype is to detect brands on already detected smartphones. The require-
ment of the prototype is that 70 % or more of tested brands shall be classified correctly.

5.3.2 Experiment

A model was trained with 297 images of a Samsung Galaxy S6 Edge device, photographed
from multiple perspectives to detect the Samsung brand. All images of the training set were
created with handwritten bounding boxes around the brand and labelled with “samsung”. The
strategy for detection was to apply brand detection only on already detected and forwarded
smartphone detections. This prototype and its goal has been rejected as “out of scope” by the
Technical Domain Specialist Georg Müller because the trained model was not able to detect
brands in more than 50 per cent of images of Samsung Galaxy S6 Edge devices. The reason
of this detection issue could not be identified clearly. One finding was that the model was
trained with small sized images (however the largest size which can be configured in the model
configuration file). Small sized images have the problem of being pixelated, as shown in the
following Figure 22.

Figure 22: Prototype 3 - Brand Subclassification Pixelation

The image on the left shows the entire image with reduced size (for training). The image in
the middle shows the contained brand in original quality. The third image shows the contained
brand after the resizing step. We can see the pixelation in the third image. However, the third
image shows a sample with better quality than the average quality of the training set.

5.4 Prototype 4 - Determine Dominant Colours

This section shows the progress of development of the “ColourExtractor”, a program to deter-
mine the major and minor colour of images of lost property items. The development was based
multiple iterations which are represented by following subsections.

31

5.4.1 Iteration 1 - One Dominant Colour

Goal

The goal of this iteration is to determine the dominant colour of a given image.

Technology

The prototype is implemented as a .NET Console Application. The used image format is JPG.

Colour Palette

The RGB cube is divided into 3 x 3 x 3 = 27 clusters. All clusters have the same size. The
centre of each cluster represents his cluster as RGB colour, therefor following colours could be
chosen as dominant colour by the application:

Figure 23: Prototype 4 Iteration 1 - Colour Palette

There is no white cluster because the centroid of the cluster in which white is contained is of
RGB value (176, 176, 176) which is light grey. On the opposite side of the RGB cube, black is
also represented as dark gray.

Area of Interest

The analysed area is defined by a quarter of the given image area, a rectangle centred in the
middle with half the width and half the height of the image.

Algorithm

Each pixel in the area of interest is mapped to a cluster. The cluster which got most pixels
mapped is chosen as the dominant cluster. The dominant colour is calculated as the centred
RGB-value of the dominant cluster.

32

Application Runtimes

The total runtime of the application to analyse an image, determine the dominant cluster and
colour and save the resulting image was below 100 milliseconds for the following environment:

• Given image size: 1000 x 1000 pixels
• Result image size: 100 x 100 pixels
• Tested samples: 25 images

An image recorded by a Samsung Galaxy S6 Edge device with a size of 4000 x 3000 pixels
has also been evaluated and took 2.0 seconds of calculation time. As an improvement for large
sized images a filter was developed which took only every fifth pixel. This improvement does not
reduce the quality because the result converges to the unfiltered result; in the given case the
mean of 600 000 equidistant RGB values in the area of interest converged against the original
3 000 000 RGB values for the tested image in an epsilon environment below 3 for the RGB
distance of d(a, b) :=

∑n
i=1|ai − bi|.

Results

The following Figure 24 shows 5 sets (columns) of tested images and the corresponding result
image from top to bottom.

Figure 24: Prototype 4 Iteration 1 - Input / Output

We see that the brown wallet is determined as black; this is because the majority of pixels were
mapped to black rather than the second colour in the colour palette as shown in Figure 23.

Conclusion

The first iteration has been designed as a base for the “ColourExtractor”, as it enables compar-
ison of a test set to compare further version improvements.

33

5.4.2 Iteration 2 - Minor and Major Colour

Goal

The goal of this iteration is to determine the minor and major dominant colour of a given image.

Algorithm

This implementation extracts two dominant colours if the second one reaches more than 5 %
area of the first one. The source code of the first iteration was extended by, at the final step of
the algorithm, choosing the topmost two clusters.

Result

The output of this iteration has changed from a box, showing the one dominant colours, to a bar.
The bar shows the major colour on the left side and the minor colour (if any) on the right side.
The line between both areas represents the ratio of the cluster sizes. The minor colour area
has a minimum size to improve the recognisability. The following Figure 25 shows a screenshot
with tested images and the result of the application.

Figure 25: Prototype 4 Iteration 2 - Input / Output

25 images were tested. The algorithm works well for t-shirts because the output colours are
understandable for humans, as decided at a presentation of the results in a meeting with Tech-
nical Domain Specialist Georg Müller. The blue t-shirt in the second row has only one colour
as a result, while the output of the regularly striped t-shirt in the second row has two colours
with a 50-50 ratio. One finding of the discussion of the presentation of these results was that

34

the output colours do not match the colour of the item because the palette is static. So it was
decided to directly use RGB values as output instead of the static palette, which is content of
the following subsection Iteration 3 - Improvements.

5.4.3 Iteration 3 - Improvements

Goal

The goal of this iteration is to determine the minor and major dominant colour of a given image
as RGB values.

Algorithm

An algorithm was developed based on the K-Means Clustering Algorithm, inspired by “Least
Squares Quantization in PCM” [14], which uses an algorithm to cluster data points. The devel-
oped algorithm is designed to find two clusters in the RGB colour space colour data of given
“.jpg”-images. The algorithm consists of two looped steps:

• Assign each data point to the nearest cluster
• Update the centroid of each cluster

The two centroids converge to the minor and major RGB value. The developed program returns
RGB values of both centroids.

Area of Interest

In this iteration, the area of interest was adjusted. Instead of a rectangle area of interest, the
1-norm was used. The 1-norm is defined as

‖x‖1 =
n∑

i=1

|xi| .

For a better fit on rectangular objects which are recorded from an angle of 45 degrees, the
1-norm was an improvement which doubles the area that a rectangle would have resulted in.
The following Figure 26 shows the previous strategy compared to the new strategy.

Figure 26: Prototype 4 Area of Interest

35

The original images are on the left side. In the second and third picture, the areas of interest
are marked with orange lines. The strategy of iteration 1 is shown in the middle. The problem
for rectangle areas is that background is included in the area, as seen in the second image
here. The image on the right shows the new strategy with the 1-norm; every pixel in the area is
content of the item and not content of the background. This strategy was tested with 42 images
of smartphones, keys and wallets. The result was that 93 % of tested images with this strategy
captured the area of items without touching the background. In the 3 remaining tested images,
the area of background was below 3 %.

Output

The output was changed to show the original image on top of the colour bar containing the
minor and major colour. Samples are shown in the next section.

Results

The result of this prototype is the console application “ColourExtractor” which takes the path
to an image as input and saves a result image to the same parent directory location. Result
images contain the original image and a colour bar which describes the minor and major colour
of the shown item and the ratio between them.

The following Figure 27 is a screenshot showing 15 result images of the application. 44 images
were analysed in total, containing partly pictures of random items taken at the RUBICON office
and partly images from the internet.

36

Figure 27: Prototype 4 - Colour Determination Results

After a presentation in a meeting with Technical Advisor Christian Kenngott and Technical Do-
main Specialist Georg Müller, these results were judged to be sufficiently good.

5.5 Prototype 5 - Material Classification

Material classification means to determine the material of lost property items just by a given
image.

5.5.1 Idea

Following materials were identified in a brainstorming session as possible goals for material
classification:

• Metal
• Wood
• Textile
• Plastic
• Leather
• Fur
• Glass

The idea is to improve colour predicates. For example, if we can determine that an item is made
out of metal, we would exchange colour classification as follows:

37

• yellow -> gold
• grey -> silver
• brown -> bronze

Another example is if we can determine that an item is made out of wood, to map brown ->
wood. For materials that can be determined as glass, the strategy is to deny colour information.

5.5.2 Laboratory Conditions

A training set could not be created because the following questions were not answered:

• What distance between the camera lens and item/material should be chosen?
• What size/resolution of training set images should be chosen?
• What sharpness of training set images should be chosen?
• How to train the features of glass?

5.5.3 Conclusion

Without training set and related literature about material classification, the business value was
declared as too low against the cost of implementation in the course of a meeting with the
Technical Domain Specialist Georg Müller.

5.6 Prototype 6 - More Item Classes

This prototype shows how the training set was extended from 4 to 7 item classes.

5.6.1 Goal

The goal of this prototype is to train a model to classify 7 different item classes. The model shall
be trained with a pre-trained model as a base. The item classes are as follows:

• Wallet (wallets)
• Phone (mobile phones)
• Keyring (a keyring with more than one key on it)
• Key (single keys)
• Glasses (optical glasses and sunglasses)
• Clock (wristwatches)
• Empty (no item is shown)

The training accuracy must reach 90 per cent or more (the higher the better). This shall be
validated by TensorBoard summaries.

38

5.6.2 Training Set

Three different meeting rooms at the office were used at three corporate events to extend the
training set with images of keyrings, glasses and wristwatches. 1736 images were collected in
total. All recorded items were made freely available by participants of the event. It was tried
to record the same count of images for every item class. Since everyone has a smartphone at
hand (company rule) but not everyone has glasses or a wristwatch, the counts differ in a range
from 126 (glasses) to 476 (single key). The image counts are shown in following Figure 28.

Figure 28: Prototype 6 - Item Classes

The training set was created in 3 hours with the following different devices:

• Nikon DSLR
• Samsung Galaxy S6 Edge
• Moto 4 Smartphone

For all pictures, as already tested in prototype 1, different angles, item rotations, item positions,
distances and lights were used to make the neural network invariant against these variations.
The following Figure 29 shows an excerpt of the training set with 3 images per item class:

39

Figure 29: Prototype 6 - Training Set Excerpt

The figure shows the variations for each class. Besides the differences described above, fol-
lowing variations were trained per item class:

• Wallets: open/closed; different colours
• Phones: with/without reflexions; display on/off; with/without phone cover; different colours
• Keyrings: different cout of keys; with/without charms; with/without lace; different colours
• Keys: colours “gold”, “silver” or “’bronze’
• Glasses: open/closed; optical glasses and sunglasses (black or clear glass); different

colours
• Clock: rolled in/out; digital/analog models; with/without reflexions; different colours
• Empty (no item is shown): with/without reflexions

5.6.3 Training

Inception v3 was used as a pre-trained model as a base (training checkpoint) for the training
of this prototype. The training was running for 6 minutes and 43 seconds and included 5 000
training steps in total.

Following figures, Figure 30 and Figure 31 show screenshots from TensorBoard about accuracy
and cross entropy over training steps. Graphs were smoothed with the TensorBoard option
“Smoothing 0.9”. The brighter coloured graphs show the original values.

40

Figure 30: Prototype 6 TensorBoard Analysis

After 5 steps of training (below 1 second) and a training accuracy of 66 %, the first validation
was logged with a validation accuracy of 53 %. The 90 % mark was reached after 80 training
steps (6 seconds) for both training accuracy and validation accuracy. So, the major prototype
goal was reached after 6 seconds. As the goal details say “90 % accuracy, the higher, the
better”, the training was continued and only stopped after 5 000 training steps (6 minutes and
43 seconds) with a training accuracy of 100 % and a validation accuracy of 99 %.

The following Figure 31 shows the same data, but with the TensorBoard option “Ignore out-
liers in chart scaling” enabled.

Figure 31: Prototype 6 TensorBoard Analysis

The scale is reduced to an interval of [0.965, 1] for accuracy and an interval of [0, 0.22] for cross
entropy. So we can see the progression in detail.

5.6.4 Results

The model was tested with a special sample accuracy test, additionally to the TensorBoard
analysis. The sample test set contained 7 item classes with 6 images per item class, 42 images
in total. The following Figure 32 shows a screenshot of all tested images.

41

Figure 32: Prototype 6 Sample Accuracy Test Set

The result is that 41 of 42 images are classified correctly. This results in a sample accuracy of
97.6 per cent. In Figure 32 the one misclassified image is “wallet_2.jpg”, marked with an orange
box. This wallet is classified as phone with a score (confidence) of 57 per cent, however the
second guess of the model would have been correct with a score of 18 per cent.

The modal score of all 42 classifications is above 99 per cent. There are 4 outliers below
59 per cent (one of them is the misclassified wallet, the other three are classified correctly).

42

5.7 Conclusion

This is a conclusion over all prototypes of the prototype development phase.

The implementation of Prototype 1 shows that 4 lost property items can be successfully classi-
fied by images with up to 99 per cent of accuracy with a training duration of 3 minutes.

In Prototype 2, an object detection model was successfully trained to detect, plot and label
smartphones, wallets and single keys. The model was strongly invariant against background
variations in terms of structure, colour and different illuminations.

The experiment in Prototype 3 shows that subclassification (feature extraction on already clas-
sified lost property items) could not be applied without further work. The main problem found,
was the fact that features of lost property items on images have a too small area to be recog-
nised.

Prototype 4 and the successful implementation of colour information extraction can be used
to determine the major and minor colour of lost property items. The algorithm works best for
clothing and colourful items. Reflecting surfaces, concave items and items made of glass are
problematic for proper colour descriptions. To execute a object detection iteration ahead of the
colour detection is helpful to filter background.

The lesson learned on Prototype 5 is that material classification will not be part of this thesis,
because no analysis could be performed due to missing data. However, material classification
can be ssen as possibility of further research and future work.

Prototype 6 is an extension of Prototype 1 with more item classes. Up to 7 item classes can
successfully be classified by the computer.

43

6 Mixed Intelligence

Mixed Intelligence is a strategy designed especially for this project. However, this strategy can
be applied to many other artificial intelligence systems. A general problem with systems using
artificial intelligence is that trained artificial neural networks do not keep up with the times. If
we would have trained artificial neural networks to recognise mobile phones 20 years ago, how
would they ever recognise mobile phones of nowadays? Mixed Intelligence is a strategy that
solves exactly this problem. Human and machine go hand in hand.

6.1 General Idea

The general idea of Mixed Intelligence is to combine the advantages of Artificial Intelligence
and Human Intelligence and let them work together to achieve goals that they would not be
able to achieve on their own.

Figure 33: Mixed Intelligence Overview

Figure 33: Mixed Intelligence Overview shows a representation of Mixed Intelligence. The round
arrow in the middle symbolises the interplay between Artificial Intelligence and Human Intelli-
gence which are the two components of Mixed Intelligence.

44

6.2 Mixed Intelligence for Lost Property Offices

With the strategy of Mixed Intelligence, the lost property item registration in lost property offices
(by lost property officers) or in trains (by train conductors) can be realized as follows.
The “actor” is a person who has to register a lost property item “item”. The “device” is
either a computer or a mobile phone.

Firstly, with the device, an image of the item is made by the actor. This is an action that humans
can perform with their hands. This action can be considered as Human Intelligence because
the human brain controls the body. A computer without hands can not place items well yet.

Secondly, the computer comes to play. A trained artificial neural network classifies the image
and returns textual and digital descriptions of the shown item. The task of description can be
considered as Artificial Intelligence because of the used artificial neural network; furthermore,
also a human would be considered intelligent to perform it (compare [3]). Artificial Intelligence
does not have the problem of dictionary variety, which is the main advantage here.

Third, an algorithm determines colour information for the recognised item. All findings are
returned and verified by the actor. Quick verifications are notThe actor has the possibility to
correct the resulting descriptions if necessary. The item is finally registrated.

6.3 Advantages and Disadvantages

This section covers the identified advantages and disadvantages that are related explicitly to
this thesis.

Identified advantages are:

• this strategy enables continuous learning of new item classes
• the training set grows per usage
• weak spots (classes) can be revealed and improved precisely

Identified disadvantages are

• human feedback interaction is needed (but is optional)
• object detection is not possible (users would have to draw bounding boxes)

45

7 Release Development “Third Ai”

This chapter shows how the thesis goal was finally reached. The developed solution combines
all lessons learned from previous prototypes. The release development phase is the last phase
of the used development model (see Development Model 1.3.1). The implementation part of the
master project ends after this phase, and the developed solution is handed over to RUBICON
in a final meeting with the Technical Advisor Christian Kenngott and the Technical Domain Spe-
cialist Georg Müller. Source code, documentation and artefacts related to the master project
are handed over via a git repository. The master thesis is submitted to RUBICON after the final
submission to Fachhochschule Technikum Wien.

7.1 Goals

The strategy of this summarising development phase is to combine all previously developed
prototypes. The best prototypes are retained, unrewarding prototypes are rejected (decided by
the Technical Advisor Christian Kenngott, the Technical Domain Specialist Georg Müller and
the author Paul Puntschart).

The main goal is to provide a software library that can take an image as input. The library
then classifies the given image and outputs human-readable text about shown lost property
items. The release development shall be driven by a precending requirement engineering
phase. Therefore, goal details are developed in the next section “Requirements”.

The following Table 6 shows which prototypes are retained or rejected, including a quick note
from the author:

46

Prototype State Note

Prototype 1 - Image Classification Retained
Main goal of this thesis;

further extended in Prototype 6

Prototype 2 - Object Detection Rejected
Rejected in favour of the

Mixed Intelligence strategy

Prototype 3 - Subclassification Rejected
Experiment did not show

sufficient results

Prototype 4 - Determine Dominant Colours Retained
Main goal of this thesis;

adjusted to colour palette output

Prototype 5 - Material Classification Rejected
Rejected because of

too high implementation costs

Prototype 6 - More Item Classes Retained
Main goal of this thesis;

extension to Prototype 1

Table 6: Documentation of Retained and Rejected Prototypes

7.2 Requirements

This section shows the strategy to reach the thesis goals. The goal is derived into three levels
of requirements, based on the Kano model [15]:

• Basic Requirements
• Performance Requirements
• Excitement Requirements

Each requirement is also linked to one of two tags:

• Application
• Function

An application requirement, e.g. “(Application) Support multiple items on one image” should
be read as “The application must support multiple items on one image.”, while function require-
ments should be read as “The application must provide a function to . . . ”.

7.2.1 Basic Requirements

The basic requirements are as follows:

• (Application) Provide a user guide

47

• (Function) Receive information about the data set

– Supported item classes

– Number of images per item class

The user guide is necessary to set up and use the developed software library solution. Infor-
mation about the data set are needed to maintain the training set.

7.2.2 Performance Requirements

There are two performance requirements:

• (Function) Generate a description for a given image regarding the item class

• (Function) Receive a description for a given image regarding item colours

The requirement of describing a given image has to reach a minimum accuracy of 90% to reach
the thesis goal, the higher, the better.

7.2.3 Excitement Requirements

Following requirements are optional but highly valuable for future work:

• (Function) Process a given image for continuous training

– Integrate an evaluated image to the data set

– Trigger continuous training

• (Function) Receive information about evaluation statistics

– Accuracy per item class

• (Application) Support multiple items shown on one image

7.2.4 Verification Strategy

To verify the result accuracy of classifying lost property items, a data set of 7 images per item
class shall be analysed with the developed software library. Overall at least 90 % of the item
class guesses shall be correct.

7.3 Technology

Following technologies are used for the released class library:

• TensorFlow: Image classification training

48

• Classification Model: The pre-trained model “inception-2015-12-05”
• ColorMine: Delta-E calculation with CIEDE2000
• .Net Solution: The Mixed Intelligence interface “Third Ai”

– C# Class Library

– Console Application

– Test Project

7.4 Solution

The solution is a .Net Visual Studio Solution named “Third Ai”. It was developed in 7 days (56
hours).

7.4.1 ThirdAiLibrary Model

The ThirdAiLibrary is modelled with three components: Use, Maintain and Model. The compo-
nent “Use” contains mainly classes that users directly need to use the library, such as a Clas-
sAnalyser, a ColourAnalyser and a FileSystemScanner. The interface to use those classes is
the class ThirdAi. ThirdAi contains the most important method “Describe”, which takes a path
to an image as input and returns an object ItemDescription.

The component “Maintain” contains classes that administrators need for a training set insight.
This component is also needed to extend the training set with new images for the existing item
classes or new images for new item classes (the mixed intelligence strategy).

The component “Model” contains the trained artificial convolutional neural network and an in-
terface to call the Python script “classify_image.py” with C# code.

7.4.2 Code Metrics

Code metrics of the solution “Third Ai” were analysed with Visual Studio. The following Figure 34

shows a screenshot of the results.

49

Figure 34: Visual Studio Code Metrics

The projects in the solution were judged with a maintainability index of 86 for the ThirdAiConsole
and a maintainability index of 85 for both the ThirdAiLibrary and the ThirdAiTests.

7.4.3 Usage

This section shows how to use the developed solution with an image of a wallet as an example.

Wallet Example

Given the image of a wallet, see Figure 35, we want to use the developed solution “Third Ai” to
determine which item is shown and how it looks like regarding the item colour.

Figure 35: Image of a Wallet as Example

The following code snippet shows how to import and use the library in a plain created console

50

application named “ThirdAiConsole”. All we need to know is the location of the image on the
computer (pathToExampleImage in this code snippet).

using System;
using ThirdAiLibrary.Use;
namespace ThirdAiConsole
{

public class Program
{

public static void Main (string[] args)
{
var pathToExampleImage = @"C:\tmp\wallet.jpg";
var thirdAi = new ThirdAi ();
Console.WriteLine (thirdAi.Describe(pathToExampleImage));

}
}

}

First, we import the library “ThirdAiLibrary.Use”. Second, we set up a variable pathToExam-
pleImage with the location of the image on the computer. Third, we initialise a variable thirdAi
with the class ThirdAi (see section ThirdAiLibrary Model 7.4.1). Finally, we call the method
“Describe” with the image path as parameter and write the result to a console.

The program returns the following text:

The item class is ’wallet’.

The major colour is ’red’, the minor colour is ’black’.

51

8 Results

This chapter shows the results and features of the developed solution “Third Ai”. Firstly, the
used item classes are explained. Second, the used item colours are shown. Third, the evalu-
ated accuracy is tested against the thesis goal of reaching an accuracy of 90 per cent.

8.1 Item Classes

The solution “Third Ai” starts with a trained set of seven lost property item classes. The item
classes are wallets, mobile phones, keyrings, single keys, glasses, wristwatches and also a
class without item. Example images are shown in the following Figure 36: Item Class Examples.

Figure 36: Item Class Examples

The developed solution provides the possibility to extend the item classes with new item
classes. It is also possible to add correct classified images to the training set for further model
training. So a lost property office can improve the power of the solution over time.

Following Table 7: Number of Object Classes per Development Phase summarises the pro-
gression of item classes in this thesis, regarding the task of classification.

Development Phase Object Classes

Proof of Concept 2

Prototype 1 - Image Classification 4

Prototype 6 - More Item Classes 7

Release - Third Ai 7+

Table 7: Number of Object Classes per Development Phase

The number of item (object) classes is rated with 7+ for the developed solution “Third Ai”,
because 7 classes are pre-trained and the number can be increased with the Mixed Intelligence
strategy.

52

8.2 Item Colours

The solution “Third Ai” utilises a colour catalogue containing 13 colours. Following Figure 37

shows all of those colours.

Figure 37: Colour Catalogue

Colours of lost property items are determined as major and minor colour. The major colour
has more area in the image than the minor colour. If major and minor colour have the same
catalogue colour, the result of “Third Ai” only shows the major colour.

The decision of which colour is chosen is based on the metric CIEDE2000. The nuget pack-
age ColorMine 1.1.3 (see [9]) is used to determine colour distances, and the nearest catalogue
colour is taken as a result.

8.3 Accuracy

The accuracy of the solution “Third Ai” is defined as how many given images are classified
correctly. The accuracy was measured as training accuracy and validation accuracy (evaluated
by TensorBoard directly at the training time) as well as with a custom sample validation set.
Achieved accuracies are shown in the following Table 8: Accuracy per Evaluation Type.

Evaluation Type Accuracy

Training Accuracy 100 %

Validation Accuracy 99 %

Sample Accuracy 98 %

Table 8: Accuracy per Evaluation Type

The sample accuracy was used to verify the thesis goal of reaching an accuracy of 90 %. This
goal was fulfilled successfully.

53

9 Conclusion

This thesis shows an approach to classify lost property items for lost property offices. Lost
property items are classified via images. The sample accuracy (how many items are classified
correctly) reached 98 %, which shows that image classification with TensorFlow is a possi-
ble approach for lost property offices. The following sections are conclusions about realised
features and two possible ways to use the developed software library “Third Ai”.

9.1 Lost Property Item Description

Lost property items can be described via given images if we use an item class set of 7 item
classes (containing an empty class with no item shown). Item description is a task that comput-
ers can do together with humans using a strategy called Mixed Intelligence (see chapter 6 Mixed
Intelligence). With this approach, a computer can automatically generate pre-filled item descrip-
tion forms.

Forms can be reviewed by lost property officers to improve computer item class knowledge
continuously. New item classes can be trained. The accuracy can be improved with new im-
ages of items without taking action as reviewer automatically.

9.2 Item Descriptions with Permanently Installed Cameras

A possible way to record images of lost property items is to use a permanently installed camera.
Lost property officers could use a simple plain desk or a wooden desk as background of a
recording station. An officer would have to position an item on that desk and push a button to
capture a picture of the item. The so created image can be piped to “Third Ai” to get a text
representation of item classification and colour determination results. This text can be reviewed
directly at the station and optionally adjusted to fit the human evaluated ground-truth. If the
description is reviewed, it can also be used to improve computer knowledge and accuracy.

9.3 Item Descriptions with Smartphones

This thesis shows that it is possible to record images with a smartphone and then to ask a
sofware library which lost property item of a known item class set is shown. The resolution of

54

images taken by smartphones nowadays is high enough (greater than the resolution of training
data images of 600 x 400 pixels used in this project). The runtime of the developed software
library function is below 2 seconds to classify a smartphone image.

The result of the library can be used to create a description of the lost property item, con-
taining item class name probability distribution information and a colour description with major
and minor colour chosen from a catalogue of 13 colours.

55

10 Discussion

To describe lost property items is a very personal issue and this thesis shows how this sub-
jectivity can be reduced by working together with a computer. Using Mixed Intelligence is an
innovative strategy that helps to keep the solution up to date and to improve the solution over
time. Although the main goal of this thesis is reached successfully, there are some edge cases
and limitations covered in the following section followed by another section about the business
value of Mixed Intelligence and the developed software library “Third Ai”.

10.1 Edge Cases and Limitations

Edge cases are situations that appear with low propability. To handle them takes a lot of time
but has only a small area of improvement. Identified edge cases are listed in this section. They
were found and documented during the implementation of the master project.

10.1.1 Images with Multiple Items

The developed solution does not support images which show multiple lost property items on
it. This decision was made to enable the strategy of Mixed Intelligence. However, with a given
training set it is possible to support multiple items on one image. That training set would just
have to contain metadata with labelled bounding boxes. In this project, it took 4 hours to draw
bounding boxes for 642 items.

An experiment has shown that it is possible to use the training data set from Prototype 2 (see
section Training Set 5.2.2)) to train the general task of detecting general objects. In a pipeline,
detected objects can then be classified and described in an extra step. This would have the
advantage that object detection and multiple items on one image can be combined with Mixed
Intelligence. It was also found, during the task of drawing bounding boxes, that correcting a
guessed object bounding box is a lot easier than drawing the bounding box from scratch.

10.1.2 Overlapping Items

In addition to the previous limitation, overlapping items are not supported by the developed
solution “Third Ai”. As shown in section Edge Cases and Misclassifications 5.2.6, overlapping
items can be a topic of interest for key bounds or a bag which is photographed with items found
inside laying onto that bag.

56

10.1.3 Item Colour Issues

In some cases, item colours cannot be determined in a meaningful way. If lost property items
are coloured with three or more main colours, the developed solution can only determine two
of them. If we have an image of a reflecting item, for example, the turned-off display of a
smartphone, the colours of the reflexion are detected instead of the colour of the item, which in
this case would be a black display and not the plafond.

10.2 Business Value

The business value of Mitxed Intelligence for lost property offices can be estimated by answer-
ing following questions. However, in this work no estimation was performed.

• How much time can we save at lost property registrations?
• How much complexity can we reduce at lost property registrations?
• Do other competitors use artificial intelligence?

57

11 Future Work

This chapter is about the possibilities of future work based on this thesis. Each of the following
sections covers a way to improve or extend the developed solution “Third Ai”. All those sug-
gestions are related to the domain of lost property offices. However, one recommended future
work not covered here is the use of Mixed Intelligence in other projects and domains.

11.1 More Item Classes

The developed solution “Third Ai” enabled the possibility to train new item classes. The Techni-
cal Domain Specialist Georg Müller rated following lost property items “of great value”:

• Items with a high finding rate
• Items with a high value (price)
• Items with a high personal value (e.g. a children´s toy)

Due to the probability of occurrence, items with a high finding rate will automatically become
part of the training set over time. This is why the Mixed Intelligence strategy is so valuable.
Other item classes should be added manually. The main question is who decides which items
are of high personal value. This can may be determined with a survey at the process of handing
over lost property items at lost property offices.

11.2 Higher Accuracy

The accuracy, which is already an accuracy of 98 %, can be approved. This can be achieved
with different approaches. One way is to add more training set data to the developed software
library. Another way is to optimise training parameters (hyperparameters like the learning rate,
optimiser, etc.). Other models of deep convolutional neural networks were not tested in this
project but may also lead to acceptable results.

11.3 More Item Features

An adequate extension of the developed description would be not only to classify item class
names and to determine colours but also to collect other item features. This has already been
tried in this project but without proper success. Additional item features would be features that

58

support to identify lost property items, like brands, logos, damages or any feature that reduces
abstraction and make an item description more concrete.

11.4 Software Integration

The developed solution “Third Ai” can be integrated into lost property software as is. However, it
is recommended to use the latest versions of TensorFlow and modern hardware if possible. Re-
search of artificial neural networks is progressing very fast these days, offering new approaches
almost every day.

11.5 Retry of Rejected Prototypes

Some prototypes were not used yet. The developed solution does not include object detection,
material classification or colour discription without a colour catalogue. To retry and solve re-
jected prototypes is a highly recomennded task to start from if the developed solution “Third Ai”
is at hand.

59

Bibliography

[1] J. McCarthy, M. I. Minsky, N. Rochester, and C. E. Shannon. A proposal for the Dartmouth
summer research project on artificial intelligence, 1955, John McCarthy (1996) [Online]
Available: http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html (Date
last accessed April 28, 2019).

[2] J. Haugeland. Artificial intelligence: The very idea, MIT Press, Cambridge, MA, 1985.

[3] E. Rich, K. Knight, and S. B. Nair. Artificial intelligence, Tata McGraw-Hill, New Delhi, 3rd
edition, 2009.

[4] C. Kumah, N. Zhang, R. K. Raji, and R. Pan. Color Measurement of Segmented Printed
Fabric Patterns in Lab Color Space from RGB Digital Images, Journal of Textile Science
and Technology, 5, 1-18., 2019. Available: https://doi.org/10.4236/jtst.2019.51001 (Date
last accessed April 29, 2019).

[5] J. W. Goethe. Zur Farbenlehre, Cotta, Tübingen, Bd. 1, 1810.

[6] C. L. Eastlake. Goethe’s Theory of Colours: Translated from the German; with Notes by
Charles Lock Eastlake, John Murray, London, 1840.

[7] I. Newton. Opticks: or, a treatise of the reflections, refractions, inflections and colours of
light. The fourth edition, corrected. By Sir Isaac Newton, Knt. London, Harvard, vol. 18,
Printed for William Innys, 1730.

[8] TensorFlow [Online], Available: https://www.tensorflow.org/ (Date last accessed April 30,
2019).

[9] ColorMine [Online], Available: http://colormine.org/delta-e-calculator/Cie2000 (Date last
accessed April 30, 2019).

[10] K. A. P. Perichappan. Greedy Algorithm Based Deep Learning Strategy for User Behavior
Prediction and Decision Making Support, Journal of Computer and Communications, vol.
6, no. 6, 2018.

[11] How to Retrain an Image Classifier for New Categories, TensorFlow [Online], Available:
https://www.tensorflow.org/hub/tutorials/image_retraining (Date last accessed April 30,
2019).

[12] Gallery of Borderline Country Lordana and Borderline Country Tiara, Alina Gaugg [Online],
Available: https://www.mileysworld.at (Date last accessed April 30, 2019).

60

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://doi.org/10.4236/jtst.2019.51001
https://www.tensorflow.org/
http://colormine.org/delta-e-calculator/Cie2000
https://www.tensorflow.org/hub/tutorials/image_retraining
https://www.mileysworld.at

[13] TensorBoard [Online], Available: https://github.com/tensorflow/tensorboard/blob/master/
README.md (Date last accessed April 30, 2019).

[14] S. P. Lloyd: Least Squares Quantization in PCM, Transactions on Information Theory, vol.
28, pp. 129–137, 1982.

[15] N. Kano, S. Nobuhiku, T. Fumio, and T. Shinichi. Attractive Quality and Must-Be Quality,
Journal of the Japanese Society for Quality Control, Japan, 1984.

[16] Uber Lost Found Wien Skurrilsten Fundstuecke, HEUTE (March 16, 2018) [Online],
Available: http://www.heute.at/oesterreich/wien/story/Uber-Lost-Found-Wien-Skurrilsten
-Fundstuecke-40590983 (Date last accessed April 16, 2019).

61

https://github.com/tensorflow/tensorboard/blob/master/README.md
https://github.com/tensorflow/tensorboard/blob/master/README.md
http://www.heute.at/oesterreich/wien/story/Uber-Lost-Found-Wien-Skurrilsten-Fundstuecke-40590983
http://www.heute.at/oesterreich/wien/story/Uber-Lost-Found-Wien-Skurrilsten-Fundstuecke-40590983

List of Figures

Figure 1 Image of a Lost Property Item . 2
Figure 2 Topic Description of the Preliminary Project Proposal 3
Figure 3 The Development Model . 4
Figure 4 The Iterative Prototype Model . 4
Figure 5 Investment of Working Hours by Date . 5
Figure 6 Team Organigram . 7
Figure 7 CUDA Driver Error Message . 12
Figure 8 TensorFlow GPU Setup Test . 13
Figure 9 Borderline Country Lordana “Minsk” (left) and Borderline Country Tiara “Titos”

(right) . 14
Figure 10 TensorBoard Training Graphs . 14
Figure 11 Prototype 1 Training Set . 19
Figure 12 Prototype 1 Classification Analysis 1 Screenshot 21
Figure 13 Training Graphs in TensorBoard . 22
Figure 14 Prototype 1 Classification Analysis 2 Screenshot 23
Figure 15 Prototype 2 TensorBoard Analysis . 25
Figure 16 Prototype 2 TensorBoard Detection vs Groundtruth 25
Figure 17 Prototype 2 Output . 26
Figure 18 Object Detection with Different Backgrounds 27
Figure 19 Object Detection for Abstract Paintings . 28
Figure 20 Object Detection for Overlapping Objects . 29
Figure 21 Object Detection for Unknown Objects . 30
Figure 22 Prototype 3 - Brand Subclassification Pixelation 31
Figure 23 Prototype 4 Iteration 1 - Colour Palette . 32
Figure 24 Prototype 4 Iteration 1 - Input / Output . 33
Figure 25 Prototype 4 Iteration 2 - Input / Output . 34
Figure 26 Prototype 4 Area of Interest . 35
Figure 27 Prototype 4 - Colour Determination Results . 37
Figure 28 Prototype 6 - Item Classes . 39
Figure 29 Prototype 6 - Training Set Excerpt . 40
Figure 30 Prototype 6 TensorBoard Analysis . 41
Figure 31 Prototype 6 TensorBoard Analysis . 41
Figure 32 Prototype 6 Sample Accuracy Test Set . 42
Figure 33 Mixed Intelligence Overview . 44

62

Figure 34 Visual Studio Code Metrics . 50
Figure 35 Image of a Wallet as Example . 50
Figure 36 Item Class Examples . 52
Figure 37 Colour Catalogue . 53

63

List of Tables

Table 1 Table of Persons . 6
Table 2 Table of Institutions . 6
Table 3 Proof of Concept - Sample Accuracy . 15
Table 4 Object Detection - Data Split Ratio . 24
Table 5 Object Detection - Class Split Ratio . 24
Table 6 Documentation of Retained and Rejected Prototypes 47
Table 7 Number of Object Classes per Development Phase 52
Table 8 Accuracy per Evaluation Type . 53

64

	Introduction
	Problem
	Goal
	Methods
	Development Model
	Iterative Prototype Model
	Investment of Working Hours

	Team

	Basics
	Artificial Intelligence
	Colour Theory

	Related Work
	TensorFlow
	ColorMine

	Proof of Concept
	Requirements
	Solution
	Setup TensorFlow-GPU
	Image Classification of Flowers
	Image Classification of Border Collie Bitches

	Results
	Training Accuracy
	Sample Accuracy
	Tournament
	Conclusion

	Prototype Development
	Prototype 1 - Image Classification
	Training Set with 3 Classes
	Training with 3 Classes
	Analysis with 3 Classes
	Training Set with 4 Classes
	Training with 4 Classes
	Analysis with 4 Classes

	Prototype 2 - Object Detection
	Requirements
	Training Set
	Training
	Visualisation
	Results
	Edge Cases and Misclassifications

	Prototype 3 - Subclassification
	Goal
	Experiment

	Prototype 4 - Determine Dominant Colours
	Iteration 1 - One Dominant Colour
	Iteration 2 - Minor and Major Colour
	Iteration 3 - Improvements

	Prototype 5 - Material Classification
	Idea
	Laboratory Conditions
	Conclusion

	Prototype 6 - More Item Classes
	Goal
	Training Set
	Training
	Results

	Conclusion

	Mixed Intelligence
	General Idea
	Mixed Intelligence for Lost Property Offices
	Advantages and Disadvantages

	Release Development ``Third Ai''
	Goals
	Requirements
	Basic Requirements
	Performance Requirements
	Excitement Requirements
	Verification Strategy

	Technology
	Solution
	ThirdAiLibrary Model
	Code Metrics
	Usage

	Results
	Item Classes
	Item Colours
	Accuracy

	Conclusion
	Lost Property Item Description
	Item Descriptions with Permanently Installed Cameras
	Item Descriptions with Smartphones

	Discussion
	Edge Cases and Limitations
	Images with Multiple Items
	Overlapping Items
	Item Colour Issues

	Business Value

	Future Work
	More Item Classes
	Higher Accuracy
	More Item Features
	Software Integration
	Retry of Rejected Prototypes

	Bibliography
	List of Figures
	List of Tables

